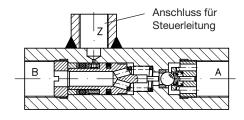
Hydraulisch entsperrbare Rückschlagventile Typ RH

mit zentralem, störmungsbedingten Durchfluß

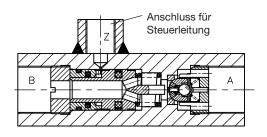
Betriebsdruck $p_{max} = 700 \text{ bar}$ Volumenstrom $Q_{max} = 160 \text{ l/min}$

Schaltsymbol

1. Allgemeines


Die Geräte gehören zur Gruppe der Sperrventile nach DIN ISO 1219-1. Durchfluß $A \to B$ gesperrt, in Gegenrichtung $B \to A$ frei. Die gesperrte Durchflußrichtung $A \to B$ kann durch hydraulische Steuerung freigegeben werden.

Verwendung:


- Sperrung leckölfreier Hydrozylinder in Verbindung mit leckölbehafteter Wegeschieber-Steuerung
- Rücklaufentlastung, wenn beim Einfahren eines doppeltwirkenden Hydrozylinders wegen des Flächenverhältnisses größere Rücklauf-Ölströme auftreten, als der zulässige Durchfluß für das Wegeventil beträgt
- hydraulisch betätigtes Ablaß- oder Umlaufventil

Die Ventile sind ohne und mit hydraulischer Vorentlastung lieferbar.

Die Ausführungen ohne Vorentlastung haben eine Kugel als Ventilelement, welche beim Entsperren verhältnismäßig schnell den vollen Durchflußquerschnitt freigibt. Die Ventile sind für alle normal üblichen Betriebsfälle geeignet. Eine Drosselstelle im Steueranschluss dämpft die Aufsteuerbewegung des Entsperrkolbens, so dass Druckstöße (Entspannungsschläge) meist ausreichend unterdrückt werden. Zeigen sie sich beim Probelauf trotzdem, kann durch Verwendung einer zur Drosselspule aufgewickelten Steuerleitung die noch zusätzlich notwendige Dämpfung erzielt werden.

Bei den Ausführungen mit Vorentlastung ist statt der Kugel ein sphärisch geschliffener Ventilkolben (Sitzventilfunktion) mit eingebautem, kleinen Kugelrückschlagventil vorhanden, welches beim Entsperren bereits vor dem Öffnen des Ventilkolbens aufgestoßen wird und einen Drosselquerschnitt freigibt für eine stoßfreie Entspannung des Verbrauchervolumens. Solcherart ausgebildete Ventile werden vorwiegend für hohe Betriebsdrücke und große Verbrauchervolumina verwendet. Die Vorentlastung ist umso wirksamer, d.h. sanfter, je geringer die Öffnungsgeschwindigkeit des Steuerkolbens ist, was erforderlichenfalls auch hier durch eine als Drosselspule ausgebildete Steuerleitung erreicht wird. Näheres Position 3 (Druck halten).

HYDRAULIK

HAWE HYDRAULIK SE STREITFELDSTR. 25 • 81673 MÜNCHEN **D 6105** Rückschlagventile Typ RH

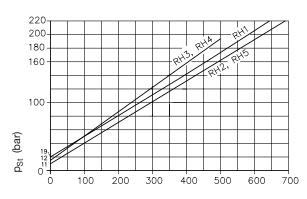
© 1975 by HAWE Hydraulik

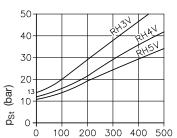
2.5

2. Lieferbare Ausführungen, Kenngrößen

Kennzeichen, Hauptdaten

Grundtyp	mit Vorentlastung	Druck p _{max} (bar)	Volumenstrom Q _{max} ca. (I/min)	Steuer- volumen ca. (cm ³)	Anschlü ISO 228 A, B		Masse (Gewicht) ca. (kg)
RH 1		700	15	0,15	G 1/4		0,4
RH 2		700	35	0,22	G 3/8		0,4
RH 3	RH 3 V		<mark>55</mark>	0,4	G 1/2	G 1/4	0,6
RH 4	RH 4 V	500	100	1	G 3/4		1,3
RH 5	RH 5 V		160	1,8	G 1		1,8


Bauart federbelastetes Kugel-Sitzventil, leckölfrei


Befestigung frei in der Rohrleitung hängend

Einbaulage beliebig

Oberflächenbehandlung glanzverzinkt und passiviert Steuerdruck p_{St} (bar) zum Entsperren ($p_B = 0$ bar)

zum Entsperren der Vorentlastung

 p_A (bar) Druck am Anschluss A \rightarrow

zum Offenhalten: $p_{St} = p_B + \Delta p + k$

p_B (bar) = Druck auf Seite B

 Δp (bar) = Durchflußwiderstand A \rightarrow B gemäß Δp -Q-Kennlinie

k = 10 bar bei RH 1 und RH 2 7 bar bei RH 3(V)

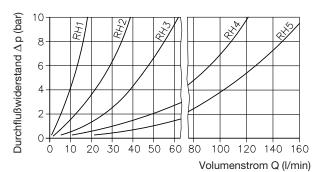
8 bar bei RH 4(V) und RH 5(V)

Druckmittel Hydrauliköl entsprechend DIN 51 524 Teil 1 bis 3; ISO VG 10 bis 68 nach DIN 51519

Viskositätsbereich: min. ca. 4; max. ca. 1500 mm²/s;

optimaler Betrieb: ca. 10...500 mm²/s.

Auch geeignet für biologisch abbaubare Druckmedien des Typs HEPG (Polyalkylenglykol) und


HEES (synthetische Ester) bei Betriebstemperaturen bis ca. +70°C

Temperaturen Umgebung: ca. -40...+80°C

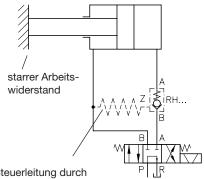
Öl: -25...+80°C, auf Viskositätsbereich achten!

Starttemperatur bis -40°C zulässig (Startviskositäten beachten!), wenn die Beharrungstemperatur im anschließenden Betrieb um wenigstens 20K höher liegt. Biologisch abbaubare Druckmedien: Herstellerangaben beachten. Mit Rücksicht auf die Dichtungsverträglichkeit nicht über +70°C.

 $\Delta \text{ p-Q-Kennlinien} \qquad \qquad \text{g\"{u}ltig f\"{u}r Durchflußrichtung B} \rightarrow \text{A und entsperrte Richtung A} \rightarrow \text{B} \\ \ddot{\text{O}ffnungsdruck B} \rightarrow \text{A} \quad 0,2 \dots 0,3 \text{ bar} \\ }$

Ölviskosität während der Messung 60 mm²/s

Bei Viskositäten über ca. 500 mm²/s ist bei den kleineren Typen (RH 1 bis RH 3) mit einer stärkeren Δp - Zunahme zu rechnen.

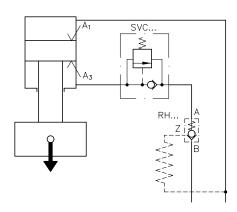

3. Funktionsweise

Druck halten

Absicherung einer unter Druck stehender Zylinderkammer gegen Druckverlust infolge Leckage des Wegeschiebers.

Zur Vermeidung von Entspannungsschlägen, die vorwiegend bei großen, unter Druck stehenden Ölräumen beim plötzlichen Entsperren auftreten können, ist im Steueranschluss eine Drosselbohrung vorhanden.

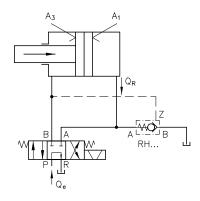
Reicht diese Drosselung aufgrund besonderer Betriebsverhältnisse nicht aus, so kann zusätzlich durch eine genügend lange, zur Drosselspule aufgewickelte Steuerleitung der Entspannungsschlag gemildert werden. Die Wirksamkeit der hydraulischen Vorentlastung bei den Typen RH..V kommt nur dann zur Wirkung, wenn die Steuerleitung in der beschriebenen Weise als Drosselspule ausgebildet und dadurch die Schaltgeschwindigkeit genügend verlangsamt wird.

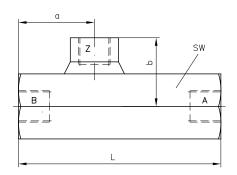


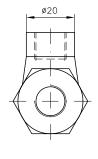
Dämpfung der Steuerleitung durch eine hydr. Drosselspule (2 ... 4 m Präz.-Rohr 6x1,5 oder 6x2)

Halten gehobener Lasten

Besonders bei stehenden oder nach unten hängenden Zylindern kann das Lastgewicht eine gleichgroße oder größere Kolbengeschwindigkeit verursachen, als diese vom Pumpenförderstrom bestimmt wird. Dadurch kann der zum Offenhalten erforderliche Steuerdruck gemäß Position 2 nicht aufgebaut werden. Das hat durch periodisches Öffnen - Schließen eine flatternde Ventilbewegung zur Folge. Abhilfe je nach Lastverhältnissen durch Ausnutzung der Dämpfungswirkung der Steuerleitung (siehe oben) oder durch Abbremsen der Last mittels Vorspannventil (z.B. Typ SVC.. nach D 7000/1) oder Drosselventil (Typ RD nach D 7540). Spezielle Lasthalteventile siehe auch D 7100.


Achtung: Bei nach unten arbeitenden Zylindern können u.U. bis zum Aufsteuern des Sperrventiles auf der Lastseite Drucksteigerungen über den Lastdruck hinaus auftreten, weil sich der Steuerdruck im Verhältnis A_1/A_3 diesem addiert.


Rücklaufentlastung


Wird angewandt, wenn beim Einfahren des Kolbens der Rücklaufstrom $Q_R=Q_e\ \frac{A_1}{A_3}\quad \text{für das Wegeventil zu groß würde}.$

Die günstigste Größe des Sperrventiles wird gefunden, indem aus dem Datenblatt des Wegeventiles der Durchflußwiderstand Δp für $A \! \to \! R$ bestimmt wird, der bei Q_e auftreten würde, und man aus der Δp -Q-Kennlinie des RH-Ventiles die Größe aussucht, die bei dem Volumenstrom Q_R - Q_e dem oben gefundenen Δp -Wert (A $\! \to \! B$) am nächsten kommt.

4. Geräteabmessungen

Тур	Anschlü					
	A, B	Z	L	а	b	SW
RH 1	G 1/4		84	31,5	27	24
RH 2	G 3/8		90	32	28,5	27
RH 3 (V)	G 1/2	G 1/4	100	36,5	<mark>31</mark>	32
RH 4 (V)	G 3/4		126	45	35,5	41
RH 5 (V)	G 1		143	52	38	46

Alle Maße in mm, Änderungen vorbehalten!